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a b s t r a c t

Many works have proven that the consistency and differences in multi-view subspace clustering make
the clustering results better than the single-view clustering. Therefore, this paper studies the multi-
view clustering problem, which aims to divide data points into several groups using multiple features.
However, existing multi-view clustering methods fail to capturing the grouping effect and local
geometrical structure of the multiple features. In order to solve these problems, this paper proposes a
novel multi-view subspace clustering model called graph-regularized least squares regression (GLSR),
which uses not only the least squares regression instead of the nuclear norm to generate grouping
effect, but also the manifold constraint to preserve the local geometrical structure of multiple features.
Specifically, the proposed GLSR method adopts the least squares regression to learn the globally
consensus information shared by multiple views and the column-sparsity norm to measure the residual
information. Under the alternating direction method of multipliers framework, an effective method is
developed by iteratively update all variables. Numerical studies on eight real databases demonstrate
the effectiveness and superior performance of the proposed GLSR over eleven state-of-the-art methods.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Clustering refers to the process of dividing a collection of
unlabeled objects into multiple categories, which has received
wide attention in image and motion segmentation [1,2], face
clustering [3–5], image representation [6,7] and other fields. Con-
siderable efforts have been expended to develop efficient and
effective methods for clustering, such as K-means-based meth-
ods [8], collaborative methods [9], graph-based methods [10–14],
and spectral-based methods [1,15–18].

Due to the complexity and diversity of data in practical appli-
cations such as trade transaction data, web documents, gene ex-
pression data, existing algorithms may yield unsatisfactory clus-
tering results, especially for high-dimensional and large data.
To solve this problem, the concept of subspace clustering [19]
was proposed, which has become the most popular method for
clustering. The whole process of subspace clustering methods
include two steps: (1) learn the similarity matrix using different
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regularizers, such as sparsity [1], low-rankness [15], and their
combinations [20]; (2) perform spectral clustering [17] on the
learned similarity matrix (also called affinity matrix) to obtain
the final clustering results. Generally speaking, the quality of
the learned similarity matrix directly determines the clustering
performance. For example, sparse subspace clustering (SSC) [1]
and low-rank representation (LRR) [15] used the l1-norm and
nuclear norm to learn the affinity matrix, respectively. The work
in [20] proposed to exploit both the low-rankness and sparsity to
construct the similarity matrix. The works in [21,22] incorporated
the Laplacian regularizer into the sparse coding and LRR model
to develop the Laplacian sparse coding framework and Laplacian
regularized LRR, respectively. The studies in [10,23] proposed to
combine the ideas of the graph theory and subspace clustering
into one unified model to discover the global mixture of subspace
structure within data. The main differences among them are
that the work in [10] used the non-negative matrix factorization
to find a low-rank approximation while the study in [23] still
used the nuclear norm to measure the low-rank property. In-
stead of the convex approximation, several non-convex low-rank
regularizers, such as Logdet rank [24], gamma-norm [25], and
weighted nuclear norm [26] have been developed. The affinity
matrix obtained by LRR may not be a diagonal matrix, so it
cannot guarantee accurate clustering results [16]. To address this
limitation, the least squares regression (LSR) [16] method was
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proposed to effectively preserve important structural informa-
tion underlying the data and generate grouping effect to yield
promising clustering results.

The above methods belong to single-view clustering, how-
ever, in practice, the same data object can be described from
different perspectives leading to multi-view data (also called
multi-view features) [12,27,28]. For example, in face recogni-
tion [27], each face image can be represented by different types of
features, such as color, texture and edge. In outlier detection [29],
multi-view data are selected to identify different types of data
outliers. In [30], miRNA-disease associations, disease semantic
information, experimentally verified miRNA–target gene inter-
actions, and gene–gene interaction network are to estimate the
miRNA similarity. Inspired by the huge success of the sparsity
and low-rankness in single-view clustering setting, many works
have extended single-view clustering methods into multi-view
settings. For example, Brbić et al. [31] proposed the multi-view
low-rank sparse subspace clustering by imposing both low-rank
and sparsity constraints on the construction of the affinity ma-
trix. The studies in [29,32] both imposed the low-rank repre-
sentation to identify outliers from the multi-view perspective.
Based on the connection between spectral clustering and Markov
chains, Xia et al. [33] developed a novel multi-view subspace
clustering method by the low-rank and sparse matrix decompo-
sition. By integrating all representation matrices as a third-order
tensor, Zhang et al. [27] extended the low-rank matrix repre-
sentation into the tensor setting, in which a low-rank tensor
constraint was introduced to explore the complementary infor-
mation among multiple views. More discussions about related
works are reported in the next section.

Unfortunately, there are several drawbacks in existing multi-
view clustering methods: (1) most of multi-view clustering meth-
ods such as [27,31,33,34] used the nuclear norm or l1-norm to
construct the affinity matrix which may not be diagonal [16].
(2) they do not take into account the inherently local geomet-
rical structure of multiple features. Therefore, it still has room
for further boosting performance of multi-view clustering. To
address these limitations, in this paper, we proposed the Graph-
regularized Least Squares Regression (GLSR) method for multi-
view subspace clustering. Fig. 1 illustrates the flowchart of the
proposed GLSR model. Considering that the LSR method [16]
tends to reduce the coefficients of the relevant data and shows
the grouping effect, the proposed GLSR method utilizes the Frobe-
nius norm instead of the nuclear norm to learn the consensus
information shared among all views and the column-sparsity
norm to measure the residual information of each view. The main
contributions of this paper are as follows:

• The proposed GLSR method effectively utilizes the consen-
sus and residual information between different views for
multi-view subspace clustering. This is achieved by using
the least squares regression instead of the nuclear norm
to generate grouping effect and the column-sparsity norm
to measure the residual information. At the same time, the
manifold regularization is introduced to maintain the local
geometrical structure.

• We adopt the augmented Lagrangian multiplier (ALM)
method to solve the proposed GLSR method, where the
closed-form solution of each subproblem is derived.

• The superiority of the proposed GLSR method is sufficiently
validated by conducting extensive experiments on eight real
databases over eleven state-of-the-art methods.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a brief review of multi-view clustering methods.
Section 3 presents our GLSR model and designs an effective
algorithm to solve the GLSR model. We evaluate the performance
of our proposed method in Section 4 and summarize this paper
in Section 5.

2. Related work

Before introducing the proposed GLSR model, we briefly re-
view the multi-view subspace clustering methods proposed in re-
cent years, which can be roughly divided into the following cate-
gories: matrix-based methods, graph-based methods and tensor-
based methods.

Matrix-based methods: The key to matrix-based methods is
to obtain a low-rank coefficient matrix. There are two common
schemes to learn a low-rank coefficient matrix. The first scheme
is based on the nuclear norm, while the last one is to use the
non-negative matrix factorization (NMF). For the first scheme,
the nuclear norm is adopted as the convex approximation of
the non-convex rank function to depict the low-rank property of
the coefficient matrix. For instance, the work in [33] exploited
the nuclear norm to recover a shared low-rank transition prob-
ability matrix as a crucial input to the standard Markov chain
method for multi-view clustering. Brbić et al. [31] performed
sparse and low-rank subspace clustering on each view and then
combined the correlation matrices to obtain a common clustering.
For the second scheme, several NMF-based multi-view clustering
algorithms have been proposed to effectively learn the basic
clustering structure embedded in multiple views and make the
different coefficient matrices comparable and meaningful. For
example, Liu et al. [35] decomposed the original matrix into
discriminative basis matrices and coefficient matrices and then
found a consensus coefficient matrix to balance all coefficient
matrices. However, the above methods do not maintain the local
geometrical structure of multiple features.

Graph-based methods: For the graph-based methods, the key
point is to construct data graph matrices effectively. In order to
connect the features of two views, the work in [36] constructed
a bipartite graph and then used the standard spectral clustering
to obtain the clustering results of two views. However, it cannot
handle more than two views. Nie et al. [37] proposed a novel
multi-view clustering model, which performed both clustering
and local structure learning. In addition, this method directly
divides the obtained optimal graph into specific clusters and au-
tomatically assigns the ideal weight to each view without explicit
weight definition and penalty parameters. In order to evaluate
the impact of different graph matrices on multi-view clustering
performance, Wang et al. [12] proposed a general graph-based
system (GBS-KO) which can effectively construct a data graph
matrix, automatically assign weight to each one and directly gen-
erate clustering results. Similar to [12], Wang et al. [38] proposed
a graph-based multi-view clustering method (GMC). Compared
with GBS-KO, GMC can help to learn each view graph matrix
and unified matrix in a mutual reinforcement manner. In order
to better capture the relationship between multiple undirected
graphs, the method in [39] combined information from multiple
graphs and link matrix factorization, where matrix factorization
is performed for each graph. When handling large-scale data,
most of the existing graph methods may cause the informa-
tion loss. To address this problem, Luo et al. [40] developed a
general framework for multi-view discrete graph clustering by
directly learning a consensus partition across multiple views. The
work in [41] proposed a novel large-scale multi-view spectral
clustering approach to improve computational efficiency.

Tensor-based methods: Although the above methods is ef-
fective, the advantages of multi-view features may not be fully
explored. The reason is that most previous methods capture only
the pairwise correlations between different views, while ignoring
high-order correlations between multiple features. To overcome
this limitation, a variety of tensor-based methods have been
proposed [27,42–45]. For example, Zhang et al. [27] proposed
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Fig. 1. The flowchart of the proposed GLSR model. Given a collection of data points with multi-view features {X (1), . . . , X (M)
}, we use the proposed GLSR model to

derive the consensus matrix C to learn the global consensus information shared by all views and the residual matrix R(V ) to measure the residual information of the
vth view. In addition, GLSR exploits the manifold constraint to describe the local geometrical structure of multiple features.

a multi-view subspace clustering method with low-rank ten-
sor constraint, in which the subspace representation matrices
of different views are considered to capture high-order correla-
tion under multi-view data. In [43], Xie et al. applied the low-
rank tensor constraint on the rotated subspace coefficient tensor
by introducing a new tensor decomposition scheme to ensure
consistency between multiple views. However, the tensor-based
approaches are used to capture the global structure of all views
and explore the correlation between them, while ignoring the
local spatial geometrical structure of all view features. A detailed
motivation of our paper can be found in the next section.

3. The proposed GLSR

In this section, we first present the proposed GLSR model
for multi-view subspace clustering. Then, we use the augmented
Lagrangian multiplier method to solve the GLSR model and derive
the closed-form solution of each subproblem. The key to the
proposed GLSR is to use the least squares regression instead of the
nuclear norm to generate the grouping effect, which can achieve
accurate clustering. The column-sparsity norm and manifold con-
straint are simultaneously taken into consideration to measure
the residual information and preserve the local geometrical struc-
ture of multiple features, respectively.

3.1. Model formulation

Suppose X = [X1, X2, . . . , Xn] ∈ Rd×n is the data matrix, where
each column is a d dimensional sample vector and n is the total
number of data points. Subspace clustering aims to obtain a self-
representation matrix and then implement the spectral clustering
on it. One common assumption is that each data point in a union
of subspaces can be represented as a linear combination of the
other data points, i.e., X = XZ + E, where Z ∈ Rn×n and E ∈ Rd×n

are the self-representation and error matrices, respectively. The
most representative subspace clustering method LRR finds the
low rank representation by solving the following optimization
model:
min
Z,E

∥Z∥∗ + β∥E∥2,1

s.t. X = XZ + E,
(1)

where ∥ · ∥∗ is the nuclear norm, i.e., the sum of all the singular
values of the matrix. ∥ · ∥2,1 is the l2,1-norm, which encourages
the columns of E to be sparse.

Although LRR has achieved promising performance, it only
focuses on single-view clustering task without exploring multi-
view features. At the same time, the diagonality of the affinity
matrix obtained by LRR cannot be guaranteed, so it may not
obtain effective clustering results. To represent the data com-
prehensively and deeply, this paper proposes a GLSR method for
multi-view subspace clustering by using the superior power of
the LSR method. Let X (v)

∈ Rd(v)×n be the vth feature matrix. d(v)
is the feature dimension of a sample vector in the vth view. The
proposed GLSR method can be expressed as the following model:

min
C,R(v),E(v)

∥C∥
2
F +

M∑
v=1

(
α∥R(v)

∥2,1 + β∥E(v)
∥2,1 + λtr(CL(v)CT )

)
s.t. X (v)

= X (v)C + X (v)R(v)
+ E(v), v = 1, . . . ,M,

(2)

where L(v) is the normalized graph Laplacian matrix of the vth
view and M is the number of views. In the proposed GLSR model,
we divide the multi-view data matrix into three parts: C , R(v),
E(v) and use the Frobenius norm and l2,1-norm to draw the
corresponding term. Matrix C ∈ Rn×n is the consensus matrix
shared by all views. Matrix R(v)

∈ Rn×n is the residual matrix to
the vth view. The size of the error matrix E(v) is d(v) × n.

The proposed GLSR in Eq. (2) may offer several favorable
merits:

• Two important characteristics in multi-view subspace clus-
tering, i.e., consensus shared among all views and residu-
als of different views are simultaneously exploited in the
proposed GLSR.

• For the consensus matrix C , we use the least squares re-
gression to generate the grouping effect. For the residual
matrix R(v), it can be viewed as the error component for
the consensus matrix of the vth view. Thus, we constrain
R(v) with the l2,1-norm to make its columns sparse. For the
error matrix E(v), due to the outliers and sample-specific
corruptions, the l2,1-norm is also adopted to characterize the
error term E(v) in our objective function.

• In order to maintain the local geometrical structure of mul-
tiple features, the manifold regularization is introduced in
the GLSR model.
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3.2. Optimization of GLSR

Borrowing the idea of ALM method [46], the constraint opti-
mization model (2) is solved by minimizing the following uncon-
strained augmented Lagrangian function

Lρ(C, R(v), E(v)
; Θ (v)) = ∥C∥

2
F +

M∑
v=1

(
α∥R(v)

∥2,1 + β∥E(v)
∥2,1 +

λtr(CL(v)CT )
)

+

M∑
v=1

(
⟨Θ (v), X (v)

− X (v)C − X (v)R(v)
− E(v)

⟩ +

ρ

2
∥X (v)

− X (v)C − X (v)R(v)
− E(v)

∥
2
F

)
,

(3)

where Θ (v) is the Lagrange multiplier; ρ > 0 is the penalty
parameter; ⟨·, ·⟩ denotes the inner product. Then, each variable
is updated iteratively by fixing the other variables as follows:

(1) Update consensus C: When other variables are fixed, Ck+1
can be updated by

min
C

∥C∥
2
F +

M∑
v=1

(
λtr(CL(v)CT ) +

ρk

2
∥X (v)C − T (v)

k ∥
2
F

)
(4)

where T (v)
k = X (v)

−X (v)R(v)
k −E(v)

k +
Θ

(v)
k
ρk

. By setting the derivative
of Eq. (4) with respect to C to zero, we can obtain a Sylvester
equation A∗C +C ∗B = Y , in which A = 2∗ I +

∑M
v=1 ρkX (v)T X (v),

B = 2λ
∑M

v=1 L
(v), and Y =

∑M
v=1 ρkX (v)T (T (v)

k − X (v)R(v)
k ).

(2) Update residual R(v): With other variables fixed, updating
R(v)
k+1 is equal to solving the following problem

min
R(v)

α∥R(v)
∥2,1 +

ρk

2
∥X (v)R(v)

− N (v)
k ∥

2
F , (5)

where N (v)
k = X (v)

−X (v)Ck+1−E(v)
k +

Θ
(v)
k
ρk

. The closed-form solution
of Eq. (5) is

R(v)
k+1 =

(
2αφ + ρkX (v)T X (V ))−1

ρkX (v)TN (v)
k , (6)

where φ is a diagonal matrix, whose diagonal entry is
1/(2

√
∥R(v)(i, :)∥2

2 + ϵ). A small constant ϵ > 0 is used to avoid
the trivial solution.

(3) Update error E: Similar to the subproblems C and R(v), the
subproblem E is determined by keeping the other variables un-
changed and omitting the unrelated variables. The optimization
problem in Eq. (3) with respect to E is expressed as:

min
E

M∑
v=1

β∥E(v)
∥2,1 +

ρk

2
∥E(v)

− F (v)
k ∥

2
F ,

min
E

β

ρk
∥E∥2,1 +

1
2
∥E − Fk∥2

F ,

(7)

where F (v)
k = X (v)

−X (v)Ck+1 −X (v)R(v)
k+1 +

Θ
(v)
K
ρk

, Fk = [F (1)
k ; F (2)

k ; · · · ;

F (M)
k ]. The jth column of the optimal solution Ek+1 is

Ek+1(:, j) =

{
∥Fk(:,j)∥2−

β
ρk

∥Fk(:,j)∥2
Fk(:, j), if β

ρk
<∥Fk(:, j)∥2;

0, otherwise.
(8)

(4) Update the Lagrange multiplier Θ (v) and penalty param-
eter ρ: Finally, Θ (v)

k+1 and ρk+1 can be updated by

Θ
(v)
k+1 = Θ

(v)
k + ρk(X (v)

− X (v)Ck+1 − X (v)R(v)
k+1 − E(v)

k+1);
ρk+1 = min{γ ∗ ρk, ρmax},

(9)

Algorithm 1 : GLSR for multi-view subspace clustering

Input: multi-view features: {X (v)
}; parameters: α, β , λ; nearest

neighbors number 5; graph Laplacian matrices {L(v)};
Initialize: C1, R(v)

1 , E1, Θ
(v)
1 initialized to 0; ρ1 = ϵ = 10−3,

γ = 1.3, tol = 10−6, k = 1;
1: while not converged do
2: Update Ck+1 by Eq. (4);
3: for v = 1 to M do
4: Update R(v)

k+1 by Eq. (6);
5: end for
6: Update Ek+1 by Eq. (8);
7: Update Θ

(v)
k+1 and ρk+1 by Eq. (9);

8: Check the convergence condition:
9: ∥X (v)

− X (v)C − X (v)R(v)
− E(v)

∥∞ ≤ tol;
10: end while
Output: Ck and R(v)

k .

where γ > 1 is to facilitate the convergence speed. ρmax is the
maximum value of the penalty parameter ρ.

Remarks:

• Each subproblem R(v) is independent and thus can be up-
dated in parallel;

• When we obtain the consensus matrix C shared among
all views and the residual matrix R(v) of the vth view, we
construct the affinity matrix by

S = P(C) +
1
M

M∑
v=1

P(R(v)), (10)

where P(x) is defined as P(x) = 0.5 ∗ (|x| + |xT |);
• We use the k-NN to construct a symmetric weight matrix

W (v). The vth graph Laplacian matrix L(v) is defined as L =

D(v)
− W (v), where D(v) is a diagonal matrix and D(v)

ii =∑
j W

(v)
ij ;

• The clustering results are yielded by performing the spectral
clustering algorithm [17] on the affinity matrix S defined in
Eq. (10).

3.3. Complexity analysis

In this subsection, we analyze the complexity of our proposed
GLSR method. There are four subproblems shown in Algorithm 1.
The main computational complexity of our proposed algorithm
is dominated by updating variables: C , R(v) and E(v). The run-
ning times of updating C and R(v) are O(dn2

+ d2n + d3) and
O(d(v)n2

+ d2(v)n), respectively, where d = d(1) + d(2) + · · · +

d(M). For each iteration, updating E(v) needs O(d(v)n2) cost. The
time complexities of updating the Lagrange multiplier Θ (v) and
penalty parameter ρ can be omitted compared with the other
subproblems. Therefore, the total complexity of our proposed
GLSR algorithm is O(dn2

+ d2n + d3).

4. Numerical experiments

In this section, we conduct experiments on eight real-world
databases with five different categories: News stories, face im-
ages, generic object, leaves, and handwritten digits. We first de-
scribe the experimental settings and implementation details in-
cluding the databases, competitors, and evaluation metrics. Then,
the experimental results are reported. Finally, we perform a de-
tailed analysis of the proposed GLSR method with respect to
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Table 1
Summary of eight real multi-view databases.
Category Database Instance cluster View 1 View 2 View 3 View 4

BBC4view 685 5 4659d 4633d 4655d 4684d
News stories BBCSport 544 5 3183d 3203d – –

3Sources 169 6 3560d 3631d 3068d –
Wikipedia 693 10 128d 10d – –

Face images ORL 400 40 4096d 3304d 6750d –

Generic object COIL_20 1440 20 1024d 3304d 6750d –

Leaves 100leaves 1600 100 64d 64d 64d –

Handwritten Digits UCI-3views 2000 10 240d 76d 6d –

parameter selection and numerical convergence. All the exper-
iments were performed on a Lenovo laptop with an Intel Core
i3-3240T 2.30 GHz CPU that has 4 cores and 4GB of memory,
running with Windows 8 and MATLAB R2013a.

4.1. Experimental settings and implementation details

Databases: Eight widely used real-world databases were se-
lected to evaluate the clustering performance of the proposed
GLSR method. Brief description of all databases are reported in Ta-
ble 1. Detailed introductions of them are as follows: BBC4view:1
It consists of 685 images of 5 object categories, each with 137
images and associated with four views. BBCSport:2 It contains
files from the BBC Sports website, which corresponds to sports
news in 5 subject areas and is associated with 2 views. 3Sources:3
It consists of 169 news, which is reported by three news organi-
zations, i.e., BBC, Reuters, and Guardian. Each news was manually
annotated with one of six topical labels. Wikipedia:4 It consists
of 693 images of 10 object categories associated with two views.
ORL:5 The ORL database contains 40 different subjects, each of
which has 10 different images. Three types of features are used:
intensity (view 1), LBP (view 2), and Gabor (view 3). 100leaves:6
One-hundred plant species leaves (100leaves) dataset contains
1600 samples from one hundred plant species. Three view fea-
tures, including shape descriptor, fine scale margin and texture
histogram are exploited. COIL_20:7 It consists of 1440 images of
20 object categories, each with 72 images and is associated with
three views. UCI-3views: It contains 2000 handwritten digits im-
ages with 10 classes. Three features including Fourier coefficients,
pixel averages and morphological features are explored.

Compared methods: The proposed GLSR method is compared
with the following state-of-the-art single-view and multi-view
clustering methods: SPC [17]: single-view clustering method
using standard spectral clustering; SSC [1]: single-view clustering
method using the l1-norm to learn a representation matrix;
LRR [15]: single-view clustering method using the nuclear norm
to learn a representation matrix; LSR [16]: single-view clustering
method using the least squares regression to learn a represen-
tation matrix; RMSC [33]: multi-view clustering method using
the low-rank and sparse matrix decomposition to learn a shared
transition probability matrix; LT-MSC [27]: multi-view clustering
method using the low-rank tensor constraint to learn a rep-
resentation tensor; ECMSC [34]: multi-view clustering method
to simultaneously exploit the representation exclusivity and in-
dicator consistency; MLAN [37]: multi-view clustering method

1 http://mlg.ucd.ie/datasets/segment.html.
2 http://mlg.ucd.ie/datasets/segment.html.
3 http://mlg.ucd.ie/datasets/3sources.html.
4 http://lig-membres.imag.fr/grimal/data.html.
5 http://www.uk.research.att.com/facedatabase.html.
6 https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+

data+set
7 http://www.cs.columbia.edu/CAVE/software/softlib/.

with adaptive neighbors; GBS-KO [12]: multi-view clustering by
graph-based system; GMC [38]: graph-based multi-view cluster-
ing; AWP [14]: multi-view clustering via adaptively weighted
procrustes. The first four methods are single-view clustering
methods, while the other seven methods belong to multi-view
clustering ones. For a fair comparison, the open source code of
each competitor was used and parameter settings were followed
the original papers.

Evaluation metrics: In order to evaluate the performance of
the above different clustering methods, we use NMI (normalized
mutual information), ACC (accuracy), Precision, Recall, F-score,
AR (adjusted rand index) and Specificity metrics for quantitative
comparison. To validate the statistic significance of comparison
results, we perform the t-test to calculate the p-value on the
clustering results of all methods. Since different metrics have
different evaluation criteria for clustering, we present multiple
metrics for a more comprehensive analysis. For seven metrics, a
higher value indicates a better clustering quality.

4.2. Experimental results

This subsection conducts experiments on five categories of
databases. The clustering results of all databases are shown in Ta-
bles 2 and 3, in which the best clustering results in each database
are highlighted in bold font and the second best clustering results
are underlined.

Table 2 provides a quantitative comparison between all meth-
ods on four News stories databases. For the BBC4view database,
it can be observed that most of the compared methods have rel-
atively unsatisfactory performance. However, our GLSR method
achieved improvements of around 1.3%, 1.9%, 1.4%, 1.1%, −0.3%,
1.8% and 1.4% compared to the most competitive method AWP in
terms of ACC, NMI, AR, F-score, Precision, Recall and Specificity
, respectively. In addition, we can see that since the affinity
matrix is constructed by the l1-norm and the local geometrical
structure is not considered, the ECMSC method usually has poor
performance. For the BBCSport database, the two most compet-
itive multi-view clustering methods MLAN, GMC and AWP have
achieved considerable results and the single-view methods LRR
and LSR also have competitive results. However, the proposed
GLSR method has achieved optimal improvements.

Comparative experiments on the 3Sources database show that
the methods SSC, LT-MSC and GBS-KO produced more impres-
sive results. For all seven metrics, the proposed GLSR method
still achieved significant improvements of around 10.7%, 5.3%,
12.9%, 9.6%, 3.8%, 6.8% and 6.1% compared to the competitive
LT-MSC method. Thus, our method achieved higher performance
on 3Sources database. For the Wikipedia database, we can see
that the RMSC method shows the competitive performance due
to the connection between spectral clustering and Markov chains.
However, the proposed GLSR method displays the absolute ad-
vantage in all metrics. In addition, the p-value is very small
on all databases, which means that our method outperforms all

http://mlg.ucd.ie/datasets/segment.html
http://mlg.ucd.ie/datasets/segment.html
http://mlg.ucd.ie/datasets/3sources.html
http://lig-membres.imag.fr/grimal/data.html
http://www.uk.research.att.com/facedatabase.html
https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set
https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set
http://www.cs.columbia.edu/CAVE/software/softlib/
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Table 2
Comparison results on four databases.
Dataset Method ACC NMI AR F-score Precision Recall Specificity

BBC4view

SPC [17] 0.675 ± 0.000 0.447 ± 0.000 0.371 ± 0.000 0.522 ± 0.000 0.513 ± 0.000 0.531 ± 0.000 0.619 ± 0.000
SSC [1] 0.660 ± 0.002 0.494 ± 0.005 0.470 ± 0.001 0.599 ± 0.001 0.578 ± 0.001 0.622 ± 0.001 0.621 ± 0.001
LRR [15] 0.802 ± 0.000 0.568 ± 0.000 0.621 ± 0.000 0.712 ± 0.000 0.697 ± 0.000 0.727 ± 0.000 0.665 ± 0.000
LSR [16] 0.815 ± 0.001 0.589 ± 0.001 0.608 ± 0.002 0.699 ± 0.001 0.701 ± 0.001 0.697 ± 0.001 0.702 ± 0.001

RMSC [33] 0.775 ± 0.003 0.616 ± 0.004 0.560 ± 0.002 0.656 ± 0.002 0.703 ± 0.003 0.616 ± 0.001 0.614 ± 0.003
LT-MSC [27] 0.591 ± 0.000 0.442 ± 0.005 0.400 ± 0.001 0.546 ± 0.000 0.525 ± 0.000 0.570 ± 0.001 0.568 ± 0.002
ECMSC [34] 0.308 ± 0.028 0.047 ± 0.009 0.008 ± 0.018 0.322 ± 0.017 0.239 ± 0.009 0.497 ± 0.064 0.439 ± 0.049
MLAN [37] 0.853 ± 0.007 0.698 ± 0.010 0.716 ± 0.005 0.783 ± 0.004 0.776 ± 0.003 0.790 ± 0.004 0.793 ± 0.006
GBS-KO [12] 0.692 ± 0.000 0.561 ± 0.000 0.477 ± 0.000 0.632 ± 0.000 0.500 ± 0.000 0.859 ± 0.000 0.862 ± 0.000
GMC [38] 0.693 ± 0.000 0.563 ± 0.000 0.479 ± 0.000 0.633 ± 0.000 0.501 ± 0.000 0.860 ± 0.000 0.864 ± 0.000
AWP [14] 0.904 ± 0.000 0.761 ± 0.000 0.797 ± 0.000 0.845 ± 0.000 0.838 ± 0.000 0.851 ± 0.000 0.850 ± 0.000
GLSR 0.917 ± 0.000 0.780 ± 0.000 0.811 ± 0.000 0.856 ± 0.000 0.835 ± 0.000 0.878 ± 0.000 0.878 ± 0.000
p-value 1.509e−03 1.082e−03 5.929e−04 3.432e−04 8.454e−04 1.045e−03 1.135e−03

BBCSport

SPC [17] 0.719 ± 0.000 0.482 ± 0.002 0.460 ± 0.001 0.581 ± 0.001 0.616 ± 0.002 0.550 ± 0.001 0.553 ± 0.001
SSC [1] 0.627 ± 0.003 0.534 ± 0.008 0.364 ± 0.007 0.565 ± 0.005 0.427 ± 0.004 0.834 ± 0.004 0.838 ± 0.004
LRR [15] 0.836 ± 0.001 0.698 ± 0.002 0.705 ± 0.001 0.776 ± 0.001 0.768 ± 0.001 0.784 ± 0.001 0.783 ± 0.002
LSR [16] 0.846 ± 0.002 0.629 ± 0.002 0.625 ± 0.003 0.719 ± 0.001 0.685 ± 0.002 0.756 ± 0.001 0.755 ± 0.001

RMSC [33] 0.826 ± 0.001 0.666 ± 0.001 0.637 ± 0.001 0.719 ± 0.001 0.766 ± 0.001 0.677 ± 0.001 0.661 ± 0.035
LT-MSC [27] 0.460 ± 0.046 0.222 ± 0.028 0.167 ± 0.043 0.428 ± 0.014 0.328 ± 0.028 0.629 ± 0.053 0.708 ± 0.058
ECMSC [34] 0.285 ± 0.014 0.027 ± 0.013 0.009 ± 0.011 0.267 ± 0.020 0.244 ± 0.007 0.297 ± 0.045 0.252 ± 0.021
MLAN [37] 0.721 ± 0.000 0.779 ± 0.000 0.591 ± 0.000 0.714 ± 0.000 0.567 ± 0.000 0.962 ± 0.000 0.966 ± 0.000
GBS-KO [12] 0.806 ± 0.000 0.759 ± 0.000 0.721 ± 0.000 0.793 ± 0.000 0.725 ± 0.000 0.874 ± 0.000 0.876 ± 0.000
GMC [38] 0.807 ± 0.000 0.760 ± 0.000 0.722 ± 0.000 0.794 ± 0.000 0.727 ± 0.000 0.875 ± 0.000 0.877 ± 0.000
AWP [14] 0.809 ± 0.000 0.723 ± 0.000 0.726 ± 0.000 0.796 ± 0.000 0.743 ± 0.000 0.857 ± 0.000 0.857 ± 0.000
GLSR 0.873 ± 0.000 0.781 ± 0.000 0.803 ± 0.000 0.851 ± 0.000 0.837 ± 0.000 0.865 ± 0.000 0.865 ± 0.000

p-value 1.111e−02 1.688e−02 3.378e−03 3.235e−03 1.758e−03 4.730e−02 6.107e−02

3Sources

SPC [17] 0.564 ± 0.003 0.507 ± 0.002 0.361 ± 0.001 0.503 ± 0.001 0.526 ± 0.003 0.482 ± 0.004 0.479 ± 0.003
SSC [1] 0.762 ± 0.003 0.694 ± 0.003 0.658 ± 0.004 0.743 ± 0.003 0.769 ± 0.001 0.719 ± 0.005 0.714 ± 0.006
LRR [15] 0.647 ± 0.033 0.542 ± 0.018 0.486 ± 0.028 0.608 ± 0.033 0.594 ± 0.031 0.636 ± 0.096 0.634 ± 0.099
LSR [16] 0.755 ± 0.011 0.687 ± 0.010 0.625 ± 0.023 0.705 ± 0.019 0.767 ± 0.016 0.653 ± 0.020 0.647 ± 0.018

RMSC [33] 0.583 ± 0.022 0.630 ± 0.011 0.455 ± 0.031 0.557 ± 0.025 0.635 ± 0.029 0.497 ± 0.028 0.494 ± 0.025
LT-MSC [27] 0.781 ± 0.000 0.698 ± 0.003 0.651 ± 0.003 0.734 ± 0.002 0.716 ± 0.008 0.754 ± 0.005 0.751 ± 0.008
ECMSC [34] 0.346 ± 0.025 0.132 ± 0.029 0.011 ± 0.031 0.295 ± 0.013 0.240 ± 0.019 0.391 ± 0.043 0.426 ± 0.022
MLAN [37] 0.775 ± 0.015 0.676 ± 0.005 0.580 ± 0.008 0.666 ± 0.007 0.756 ± 0.003 0.594 ± 0.009 0.585 ± 0.009
GBS-KO [12] 0.692 ± 0.000 0.622 ± 0.000 0.443 ± 0.000 0.605 ± 0.000 0.484 ± 0.000 0.805 ± 0.000 0.810 ± 0.000
GMC [38] 0.693 ± 0.000 0.622 ± 0.000 0.443 ± 0.000 0.605 ± 0.000 0.484 ± 0.000 0.804 ± 0.000 0.811 ± 0.000
AWP [14] 0.757 ± 0.000 0.757 ± 0.000 0.621 ± 0.000 0.707 ± 0.000 0.721 ± 0.000 0.694 ± 0.000 0.690 ± 0.000
GLSR 0.888 ± 0.001 0.810 ± 0.001 0.787 ± 0.001 0.839 ± 0.001 0.807 ± 0.001 0.873 ± 0.001 0.872 ± 0.001
p-value 2.444e−04 1.968e−03 3.179e−04 1.694e−04 2.521e−03 2.008e−04 1.680e−04

Wikipedia

SPC [17] 0.567 ± 0.000 0.533 ± 0.000 0.429 ± 0.000 0.490 ± 0.000 0.499 ± 0.000 0.481 ± 0.000 0.478 ± 0.000
SSC [1] 0.561 ± 0.001 0.527 ± 0.002 0.418 ± 0.001 0.481 ± 0.001 0.491 ± 0.001 0.471 ± 0.001 0.468 ± 0.001
LRR [15] 0.554 ± 0.001 0.523 ± 0.001 0.417 ± 0.000 0.479 ± 0.000 0.490 ± 0.000 0.468 ± 0.001 0.466 ± 0.001
LSR [16] 0.554 ± 0.001 0.523 ± 0.001 0.419 ± 0.001 0.479 ± 0.001 0.490 ± 0.001 0.468 ± 0.001 0.466 ± 0.001

RMSC [33] 0.579 ± 0.018 0.534 ± 0.009 0.441 ± 0.016 0.501 ± 0.012 0.506 ± 0.027 0.498 ± 0.009 0.494 ± 0.016
LT-MSC [27] 0.532 ± 0.003 0.496 ± 0.005 0.407 ± 0.005 0.471 ± 0.005 0.480 ± 0.004 0.461 ± 0.006 0.462 ± 0.004
ECMSC [34] 0.563 ± 0.000 0.522 ± 0.000 0.413 ± 0.000 0.475 ± 0.000 0.494 ± 0.000 0.457 ± 0.000 0.457 ± 0.000
MLAN [37] 0.203 ± 0.001 0.066 ± 0.000 0.020 ± 0.000 0.127 ± 0.000 0.127 ± 0.000 0.127 ± 0.000 0.124 ± 0.000
GBS-KO [12] 0.447 ± 0.000 0.415 ± 0.000 0.143 ± 0.000 0.282 ± 0.000 0.189 ± 0.000 0.549 ± 0.000 0.551 ± 0.000
GMC [38] 0.449 ± 0.000 0.417 ± 0.000 0.145 ± 0.000 0.284 ± 0.000 0.191 ± 0.000 0.550 ± 0.000 0.545 ± 0.000
AWP [14] 0.573 ± 0.000 0.543 ± 0.000 0.434 ± 0.000 0.497 ± 0.000 0.493 ± 0.000 0.501 ± 0.000 0.499 ± 0.000
GLSR 0.587 ± 0.012 0.543 ± 0.009 0.448 ± 0.006 0.507 ± 0.005 0.516 ± 0.008 0.497 ± 0.005 0.500 ± 0.005

p-value 3.908e−02 8.794e−02 3.437e−02 3.520e−02 3.561e−02 2.769e−01 2.263e−01

competing methods with statistically significant level, and similar
results are also shown in Table 3.

Table 3 shows the performance comparison of the differ-
ent methods on the ORL, 100leaves, COIL_20, and UCI-3views
databases. We obtain the following observations:

• Generally speaking, in most cases, the proposed GLSR
achieves better or comparable performance than all com-
petitors. Specifically, on all News stories databases and
Generic object database COIL_20, the performance of GLSR
is the best among all competing methods. On BBC4view and
3Source databases, the improvements over the best com-
peting algorithms is at least 1.3% and 1.9% with respect to
ACC and NMI values. On the other databases, the proposed
GLSR is the second best among all methods. The superiority
of GLSR over all competitors may come from the fact that

the consensus among all views, residuals of different views,
noise removal, and manifold regularization are integrated
into a joint optimization model to yield a reliable affinity
matrix.

• On all databases except 100leaves and UCI-3views, LSR out-
performs LRR, in which LSR used the least squares regression
to learn the representation matrix while LRR exploited the
nuclear norm. This indicates that the least square regression
is a better way to yield the grouping effect than the nuclear
norm. This is also our original inspiration. In addition, RMSC
and LT-MSC are two representative multi-view subspace
clustering methods, both of which used the nuclear norm to
handle the multi-view clustering task. However, their per-
formance is unsatisfied on all databases over the proposed
GLSR method.
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Table 3
Comparison results on four databases.
Dataset Method ACC NMI AR F-score Precision Recall Specificity

ORL

SPC [17] 0.725 ± 0.025 0.884 ± 0.002 0.664 ± 0.005 0.664 ± 0.005 0.610 ± 0.006 0.728 ± 0.005 0.784 ± 0.005
SSC [1] 0.765 ± 0.008 0.893 ± 0.007 0.694 ± 0.013 0.682 ± 0.012 0.673 ± 0.007 0.764 ± 0.005 0.823 ± 0.021
LRR [15] 0.773 ± 0.003 0.895 ± 0.006 0.724 ± 0.020 0.731 ± 0.004 0.701 ± 0.001 0.754 ± 0.002 0.674 ± 0.003
LSR [16] 0.787 ± 0.029 0.904 ± 0.010 0.719 ± 0.026 0.726 ± 0.025 0.684 ± 0.029 0.774 ± 0.024 0.778 ± 0.027

RMSC [33] 0.723 ± 0.007 0.872 ± 0.012 0.645 ± 0.003 0.654 ± 0.007 0.607 ± 0.009 0.709 ± 0.004 0.663 ± 0.003
LT-MSC [27] 0.795 ± 0.007 0.930 ± 0.003 0.750 ± 0.003 0.768 ± 0.004 0.766 ± 0.009 0.837 ± 0.005 0.810 ± 0.027
ECMSC [34] 0.854 ± 0.011 0.947 ± 0.009 0.810 ± 0.012 0.821 ± 0.015 0.783 ± 0.008 0.859 ± 0.012 0.925 ± 0.012
MLAN [37] 0.705 ± 0.022 0.854 ± 0.018 0.384 ± 0.010 0.376 ± 0.015 0.254 ± 0.021 0.721 ± 0.020 0.660 ± 0.010
GBS-KO [12] 0.632 ± 0.000 0.856 ± 0.000 0.336 ± 0.000 0.361 ± 0.000 0.230 ± 0.000 0.801 ± 0.000 0.849 ± 0.000
GMC [38] 0.633 ± 0.000 0.857 ± 0.000 0.337 ± 0.000 0.360 ± 0.000 0.232 ± 0.000 0.801 ± 0.000 0.850 ± 0.001
AWP [14] 0.753 ± 0.000 0.908 ± 0.000 0.697 ± 0.000 0.705 ± 0.000 0.615 ± 0.000 0.824 ± 0.000 0.845 ± 0.000
GLSR 0.827 ± 0.021 0.916 ± 0.012 0.758 ± 0.030 0.764 ± 0.030 0.729 ± 0.031 0.802 ± 0.030 0.819 ± 0.021

p-value 1.610e−03 2.121e−02 2.119e−02 2.100e−02 2.534e−02 1.587e−01 2.577e−01

100leaves

SPC [17] 0.535 ± 0.011 0.748 ± 0.004 0.388 ± 0.011 0.394 ± 0.011 0.379 ± 0.012 0.411 ± 0.011 0.404 ± 0.013
SSC [1] 0.627 ± 0.012 0.814 ± 0.005 0.508 ± 0.008 0.513 ± 0.008 0.479 ± 0.010 0.552 ± 0.009 0.542 ± 0.010
LRR [15] 0.528 ± 0.011 0.752 ± 0.004 0.398 ± 0.009 0.404 ± 0.009 0.387 ± 0.008 0.423 ± 0.012 0.416 ± 0.008
LSR [16] 0.496 ± 0.010 0.725 ± 0.005 0.346 ± 0.010 0.352 ± 0.010 0.335 ± 0.010 0.371 ± 0.010 0.346 ± 0.006

RMSC [33] 0.711 ± 0.026 0.875 ± 0.008 0.630 ± 0.025 0.634 ± 0.025 0.595 ± 0.027 0.679 ± 0.022 0.673 ± 0.017
LT-MSC [27] 0.736 ± 0.007 0.870 ± 0.006 0.641 ± 0.012 0.644 ± 0.012 0.615 ± 0.012 0.678 ± 0.013 0.659 ± 0.012
ECMSC [34] 0.733 ± 0.005 0.863 ± 0.004 0.628 ± 0.009 0.632 ± 0.009 0.602 ± 0.009 0 0.665 ± 0.011 0.629 ± 0.016
MLAN [37] 0.883 ± 0.001 0.950 ± 0.001 0.830 ± 0.001 0.823 ± 0.012 0.791 ± 0.018 0.858 ± 0.007 0.861 ± 0.006
GBS-KO [12] 0.824 ± 0.000 0.934 ± 0.000 0.571 ± 0.000 0.577 ± 0.000 0.427 ± 0.000 0.889 ± 0.000 0.898 ± 0.000
GMC [38] 0.824 ± 0.000 0.929 ± 0.000 0.497 ± 0.000 0.504 ± 0.000 0.352 ± 0.000 0.887 ± 0.000 0.891 ± 0.001
AWP [14] 0.814 ± 0.000 0.920 ± 0.000 0.754 ± 0.000 0.757 ± 0.000 0.710 ± 0.000 0.810 ± 0.000 0.809 ± 0.000
GLSR 0.871 ± 0.017 0.953 ± 0.005 0.836 ± 0.017 0.838 ± 0.017 0.804 ± 0.022 0.875 ± 0.014 0.875 ± 0.012

p-value 1.941e−03 2.192e−03 1.488e−04 1.348e−04 1.069e−04 3.994e−03 3.980e−03

COIL_20

SPC [17] 0.672 ± 0.063 0.806 ± 0.008 0.619 ± 0.018 0.640 ± 0.017 0.596 ± 0.021 0.692 ± 0.013 0.668 ± 0.015
SSC [1] 0.803 ± 0.022 0.935 ± 0.009 0.798 ± 0.022 0.809 ± 0.013 0.734 ± 0.027 0.804 ± 0.028 0.945 ± 0.025
LRR [15] 0.761 ± 0.003 0.829 ± 0.006 0.720 ± 0.020 0.734 ± 0.006 0.717 ± 0.003 0.751 ± 0.002 0.719 ± 0.008
LSR [16] 0.779 ± 0.012 0.862 ± 0.008 0.716 ± 0.017 0.731 ± 0.016 0.684 ± 0.028 0.786 ± 0.013 0.783 ± 0.013

RMSC [33] 0.685 ± 0.045 0.800 ± 0.017 0.637 ± 0.044 0.656 ± 0.042 0.620 ± 0.057 0.698 ± 0.026 0.696 ± 0.037
LT-MSC [27] 0.804 ± 0.011 0.860 ± 0.002 0.748 ± 0.004 0.760 ± 0.007 0.741 ± 0.009 0.776 ± 0.006 0.797 ± 0.008
ECMSC [34] 0.782 ± 0.001 0.942 ± 0.001 0.781 ± 0.001 0.794 ± 0.001 0.695 ± 0.002 0.925 ± 0.001 0.928 ± 0.026
MLAN [37] 0.862 ± 0.011 0.961 ± 0.004 0.835 ± 0.006 0.844 ± 0.013 0.758 ± 0.008 0.953 ± 0.007 0.931 ± 0.003
GBS-KO [12] 0.790 ± 0.001 0.940 ± 0.000 0.783 ± 0.000 0.794 ± 0.000 0.693 ± 0.000 0.928 ± 0.000 0.933 ± 0.000
GMC [38] 0.791 ± 0.001 0.941 ± 0.000 0.782 ± 0.000 0.794 ± 0.000 0.694 ± 0.000 0.929 ± 0.000 0.934 ± 0.001
AWP [14] 0.650 ± 0.000 0.909 ± 0.000 0.695 ± 0.000 0.714 ± 0.000 0.573 ± 0.000 0.949 ± 0.000 0.946 ± 0.000
GLSR 0.872 ± 0.006 0.940 ± 0.003 0.836 ± 0.005 0.844 ± 0.005 0.789 ± 0.007 0.907 ± 0.004 0.906 ± 0.004

p-value 2.211e−04 1.889e−02 7.092e−04 7.541e−04 1.639e−04 4.381e−02 9.483e−02

UCI-3views

SPC [17] 0.732 ± 0.011 0.642 ± 0.005 0.545 ± 0.012 0.591 ± 0.011 0.582 ± 0.013 0.601 ± 0.011 0.614 ± 0.011
SSC [1] 0.815 ± 0.011 0.840 ± 0.001 0.770 ± 0.005 0.794 ± 0.004 0.747 ± 0.010 0.848 ± 0.004 0.847 ± 0.000
LRR [15] 0.871 ± 0.001 0.768 ± 0.002 0.736 ± 0.002 0.763 ± 0.002 0.759 ± 0.002 0.767 ± 0.002 0.784 ± 0.002
LSR [16] 0.819 ± 0.000 0.863 ± 0.000 0.787 ± 0.000 0.810 ± 0.000 0.756 ± 0.000 0.872 ± 0.000 0.708 ± 0.000

RMSC [33] 0.915 ± 0.024 0.822 ± 0.008 0.789 ± 0.014 0.811 ± 0.012 0.797 ± 0.017 .826 ± 0.006 0.812 ± 0.014
LT-MSC [27] 0.803 ± 0.001 0.775 ± 0.001 0.725 ± 0.001 0.753 ± 0.001 0.739 ± 0.001 0.767 ± 0.001 0.763 ± 0.001
ECMSC [34] 0.718 ± 0.001 0.780 ± 0.001 0.672 ± 0.001 0.707 ± 0.001 0.660 ± 0.001 0.760 ± 0.001 0.761 ± 0.001
MLAN [37] 0.874 ± 0.000 0.910 ± 0.000 0.847 ± 0.000 0.864 ± 0.000 0.797 ± 0.000 0.943 ± 0.000 0.875 ± 0.000
GBS-KO [12] 0.735 ± 0.000 0.814 ± 0.000 0.677 ± 0.000 0.711 ± 0.000 0.642 ± 0.000 0.798 ± 0.000 0.795 ± 0.000
GMC [38] 0.736 ± 0.000 0.815 ± 0.000 0.678 ± 0.000 0.713 ± 0.000 0.644 ± 0.000 0.799 ± 0.000 0.797 ± 0.000
AWP [14] 0.806 ± 0.000 0.842 ± 0.000 0.759 ± 0.000 0.785 ± 0.000 0.734 ± 0.000 0.842 ± 0.000 0.842 ± 0.000
GLSR 0.924 ± 0.001 0.859 ± 0.001 0.841 ± 0.001 0.857 ± 0.001 0.854 ± 0.001 0.860 ± 0.001 0.860 ± 0.001

p-value 1.169e−04 2.912e−02 8.361e−04 9.213e−04 6.498e−05 4.925e−02 4.890e−03

• Compared with the LT-MSC and ECMSC methods, the GLSR
method significantly improves the subspace clustering per-
formance, because it uses the manifold regularization to
preserve the local geometrical structure of multiple features,
while LT-MSC and ECMSC consider only the global structure.

• The advantage of our GLSR method over the recently pro-
posed GBS-KO and GMC methods is very obvious on all
databases. The GLSR has achieved at least 4.7% and 2.4%
improvement with respect to ACC and NMI values over
both of them. The reason is that both of the GBS-KO and
GMC methods used the raw multi-view features to learn the
similarity matrix, however, the raw data are usually contam-
inated by different noise and outliers. The proposed GLSR
used the column-sparsity norm to achieve noise removal.

4.3. Model analysis

In this subsection, we analyze the parameter selection and
numerical convergence on the 3Sources, BBC4view and BBCSport
databases to fully understand the proposed GLSR method.

4.3.1. Parameter selection
We use several experiments to show the importance of three

parameters including α, β, λ for the proposed method. α, β, λ

are used to balance residual term, error term and manifold con-
straint and they are empirically selected from [0.001, 0.005,
0.01, 0.05, 0.1, 0.2, 0.4, 0.5], [0.01, 0.05, 0.1, 0.5, 1, 10]
and [0.01, 0.1, 1, 10], respectively. Generally, the larger the
parameter value, the greater the importance or impact on the
corresponding metrics is.
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Fig. 2. ACC versus different values of parameters α and β (left), and parameter λ (right) on (a) 3Sources and (b) BBC4view.

Fig. 3. Numerical convergence and ACC versus iterations on (a) 3Sources and (b) BBCSport.

The first column of Fig. 2 shows the relationship between ACC
and the parameters α, β when the parameter λ is fixed. It can
be seen that the parameter β has a greater impact on ACC to
a certain extent, and when the parameters α, β are within the
feasible range, the best clustering results can be obtained.

In the second column of Fig. 2, we first fix the parameters α,
β and then assign different values to the parameter λ to show
the effect of λ. We can see from the 3Sources database, the value
of ACC is the largest when λ = 0.01, and the value of ACC
reduces when λ becomes larger. For the BBC4view database, the
ACC values have a peak at λ = 0.1. This is mainly because
when the parameter λ is too large, the corresponding manifold
constraint will play a leading role in the clustering, ignoring the
global structure of the data.

4.3.2. Numerical convergence
This subsection investigates the numerical convergence of the

proposed GLSR method. Fig. 3 shows the iterative error (red

line) and ACC (blue line) curves on the 3Sources and BBCSport
databases. The iterative error is calculated by ∥X (v)

− X (v)C −

X (v)R(v)
− E(v)

∥∞. One can be seen that our method converges
stably after 40 iterations. In addition, during the optimization
process, the ACC curve increases gradually as the number of
iterations increases and stabilizes after several fluctuations. The
above two figures have indicated that our algorithm has the
strong numerical convergence.

5. Conclusions and future work

In this paper, we proposed a novel multi-view subspace clus-
tering model named Graph-regularized Least Squares Regression
(GLSR), which takes advantage of the tremendous information of
the multiple features. The key point of the proposed GLSR method
is that in order to obtain better grouping effect, the least squares
regression is introduced instead of the nuclear norm to learn a
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reliable affinity matrix. At the same time, the column-sparsity
norm was used to obtain the residual information. In addition,
the manifold regularization was adopted to preserve the local
geometric structure of multiple features. Finally, we integrated
all above terms into a unified framework and designed an ef-
fective algorithm based on the augmented Lagrangian multiplier
method. The proposed GLSR method was compared with other
state-of-the-art methods on eight real-world databases and the
experimental results showed that GLSR method is superior to
those eleven single-view and multi-view clustering methods.

In addition, our work also has certain limitations. Since the
proposed method was originally designed to process the data
located in multiple linear subspaces, the performance of the
proposed GLSR method may be unsatisfactory when the multi-
media data come from nonlinear subspace. Therefore, designing
a method that can handle the data from multiple nonlinear and
linear subspaces is the first focus of our future research work. The
second research direction is that we will attempt to investigate
more reliable priors such as the block diagonal property of the
similarity matrix to further explore the underlying structures of
multiple features. The last future research is to develop robust
scalable algorithms to fit large-scale databases.
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